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[1] Using the APEC Climate Center (APCC) operational multimodel ensemble (MME)
hindcasts of precipitation and temperature at 850 hPa for boreal winters for the period
1981–2003, along with those of the individual models as well as corresponding observed
and reanalyzed data, we propose the use of a “climate” filter to diagnose and improve
the prediction skills. The “filter” is based on the observed strong association between the
El Niño–Southern Oscillation (ENSO)‐associated Walker circulation and the tropical
Pacific rainfall. The reproducibility of this relationship is utilized to evaluate the fidelity
of the models. It is found that the retrospective forecast skill of a newer type of MME
that contains only the “more skillful” models is superior to that of the all‐inclusive
operational MME. The difference of the prediction skills between the “more skillful” and
“less skillful” MMEs varies with the region and is significant in subtropics such as East
Asia, while most of the models perform well in tropics adjacent to the Pacific. Our
pilot forecast with the proposed MME for two boreal winter seasons indicates that the
method generally works better than the all‐inclusive MME in many of the target regions.

Citation: Lee, D. Y., K. Ashok, and J.‐B. Ahn (2011), Toward enhancement of prediction skills of multimodel ensemble
seasonal prediction: A climate filter concept, J. Geophys. Res., 116, D06116, doi:10.1029/2010JD014610.

1. Introduction

[2] The multimodel ensemble (MME) techniques are
known to be a useful and practical approach for alleviating
the inherent errors contained in individual models and natu-
rally offer better predictability and realistic features because
of the ability to isolate observed outcomes from multiple
models and reduce individual model‐specific systematic
errors [Krishnamurti et al., 1999, 2000; Palmer et al., 2000;
Shukla et al., 2000; Barnston et al., 2003, Hagedorn et al.,
2005; Doblas‐Reyes et al., 2000]. Indeed, several studies
[Krishnamurti et al., 2000; Palmer et al., 2000; Pavan and
Doblas‐Reyes, 2000; Peng et al., 2002; Shukla et al., 2000;
Hagedorn et al., 2005; Doblas‐Reyes et al., 2005; Yun et al.,
2005; Wang et al., 2008, 2009; Min et al., 2009; Lee et al.,
2010] have reported that, in general, the performance skill
of the MME is higher than that of the constituent individual
models. Encouraged by such results, nowadays, a number of
meteorological/climate prediction centers worldwide opera-
tionally implement dynamical MME seasonal prediction,
often with individual models selected through some in‐house
quality control, which typically looks for problems such as
spurious or missing values, etc. [Palmer et al., 2004; Lee et
al., 2009].

[3] However, it is found from operational experience that
for some seasons/regions, the MME prediction skills are also
relatively limited (see Figure A1 in Appendix A). This means
that there is further scope to improve the MME prediction
skills.
[4] In the current study we propose that reproducibility of

an important observed climate signal, such as rainfall or
atmospheric response to El Niño–Southern Oscillation (ENSO)
in the tropical Pacific which we choose as an example, can be
used as a “climate” filter to evaluate individual constituent
models. We further demonstrate that an MME with constit-
uent models, which have such fidelity, performs better as
compared to the MME containing all the available models.
This research aims to facilitate a new approach module for
MME prediction using the relative dynamical diagnostic
performance within the model itself, not directly using
external forcing of model.
[5] The rest of this paper is organized as follows. Section 2

describes the observed and individual model data used,
general methodology, and also introduces a “climate filter”
concept to grade the individual models. In section 3 the
relative performances of the various MME are presented.
Concluding remarks can be found in section 4.

2. Data Used and the “Climate” Filter

2.1. Data Used

[6] In the present study we use the National Centers for
Environmental Prediction (NCEP)‐Department of Energy
(DOE) reanalysis 2 [Kanamitsu et al., 2002] and Climate
Prediction Center Merged Analysis of Precipitation (CMAP)
[Xie and Arkin, 1997] for the boreal winter seasons (December
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through February, hereinafter DJF) for the period 1981–2003
as observations. In order to facilitate a new approach method
for MME prediction through the relative performances
and error analysis of individual climate models, we adopt
10 operational seasonal prediction model hindcast outputs
(see Table 1) for the same period, which, in general, constitute
a major portion of the operationalMME of the APECClimate
Center (APCC), which, as of today, is the most extensive
operational MME setup. For this study we also adopt a simple
composite method [Peng et al., 2002;Kang et al., 2009; Lee
et al., 2009] as one of several APCC operational MME
techniques such as the multiple regression based on the
training period [Krishnamurti et al., 2000], the synthetic
multimodel ensemble based on EOF‐filtered data [Yun et al.,
2005], and the stepwise pattern projection method [Kug et al.,
2008]. In this technique, equal weights are assigned to the
ensemble mean predictions of each of the models. Herein-
after, MME means a simple composite method, unless other-
wise specified.
[7] The MME results are generated by the combination of

bias corrected model forecast anomalies as a simple arith-
metic mean of predictions based on individual models [Peng
et al., 2002; Kang et al., 2009; Lee et al., 2009] and the

verification of the hindcast can be evaluated as an unbiased
performance of models.
[8] Finally, we explore the usefulness of the method by

carrying out a pilot forecast with a new approach method for
improving MME prediction for two boreal winter seasons of
December 2008 to February 2009 and December 2009 to
February 2010, for which seasons the participant model
forecast data are available.

2.2. Climate Filter

[9] It is well known that the ENSO is the most important
climate phenomenon that drives climate variability in the
tropics and beyond. The ENSO‐related zonal circulation is
the major factor for rainfall variability in the tropical Pacific,
as seen from the temporal DJF correlation patterns between
the localWalker circulation (calculationmethod follows from
next paragraph) and local precipitation (Figure 1) for periods
1981–2003. Figure 1 attests to this as seen from the high
correlations, in general, along 10°S–10°N and particularly
with magnitudes of more than 0.8 in the central and western
tropical Pacific. This implies that for any model to predict the
rainfall well, simulation of the ENSO‐associated Walker
circulation in the tropical Pacific, and importantly, its asso-

Table 1. Description of the General Circulation Models Used

Member Economies Acronym for Model Organization Model Resolution

Australia POAMA Bureau of Meteorology Research Centre T47L17
Canada MSC_GEM Meteorological Service of Canada 2° × 2° L50

MSC_GM2 T32L10
MSC_GM3 T63L32
MSC_SEF T95L27

Chinese Taipei CWB Central Weather Bureau T42L18
Korea GCPS Seoul National University T63L21

GDAPS_F Korea Meteorological Administration T106L21
NIMR National Institute of Meteorological Research 5° × 4° L17

United States NCEP National Centers for Environmental Prediction T62L64

Figure 1. Observed temporal boreal winter correlation patterns between the local Walker circulation and
precipitation during the period of 1981–2003.
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ciation with local rainfall, is the minimum requirement and
thus an important measure of model fidelity for predicting the
tropical rainfall. We utilize this concept, what we refer to as a
climate filter, to grade the individual constituent models.
[10] To calculate the Walker circulation, we follow a

method by Tanaka et al. [2004], who divide the global
divergent field, represented by 200 hPa velocity potential,
into contributions from the Hadley, Walker, and monsoon
circulations. Tanaka et al. [2004] demonstrate that the time
series of this Walker circulation correlates significantly well
with the ENSO variations. We do not, however, consider
the monsoon contribution, defined as the deviation from the
12 month running mean, as we deal with only a single season.
Instead, to understand the interannual variability of Walker
circulation during boreal winter better, we use seasonal
anomalies obtained by subtracting the seasonal climatology
based on the period 1981–2003 [Wang, 2002]. The distribu-
tion of our Walker circulation index is consistent with the
ENSO variation represented by the Niño3.4 SST anomalies
(Figure 2), and also similar to a Walker circulation index of
Wang [2002] that uses 500 hPa vertical velocity anomalies.
We calculate the difference of theWalker circulation between
the tropical eastern Pacific (10°S–0°, 175°E–105°W) and the
tropical western Pacific (10°S–5°N, 110°E–135°E) as an
index of the Walker circulation. The correlation of the
observed Walker circulation indices with the Niño3.4 SST
anomalies is −0.92 and is significant at the 99% confidence
level from two‐tailed Student’s t test.

[11] Briefly, theWalker circulations using 200 hPa velocity
potential are given by the following: (1) The climatological
seasonal mean field (�) is removed from the velocity potential
at 200 hPa (c),

�′ t; x; yð Þ ¼ � t; x; yð Þ � � x; yð Þ; ð1Þ

(2) the zonal mean field ([c′]) contains the information of the
Hadley circulation, and (3) we obtain the Walker circulation
by removing ([c′]) from c′(t, x, y),

�′* t; x; yð Þ ¼ �′ t; x; yð Þ � �′ t; yð Þ½ �: ð2Þ

Figure 2. Comparison of the Niño 3.4 SST anomalies (solid red line) with the Walker circulation index
(solid bars) of individual models, which is defined by difference between the tropical eastern Pacific
(10°S–0°, 175°E–105°W) and the tropical western Pacific (10°S–5°N, 110°E–135°E) removing the
zonal mean from the anomalous velocity potential at 200 hPa. The observed Walker circulation index
(solid black bars) is also represented.

Table 2. Temporal Correlation Between Observed Niño3.4 Sea
Surface Temperature Anomalies and Walker Circulation Index of
Observation and IndividualModels During the Period of 1981–2003

Correlation

Observed −0.92
Model 1 −0.76
Model 2 −0.81
Model 3 −0.91
Model 4 −0.89
Model 5 −0.95
Model 6 −0.93
Model 7 −0.92
Model 8 −0.90
Model 9 −0.94
Model 10 −0.81
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Then we apply the squared correlation coefficient (r2)
between c′* and Niño 3.4 index as the local weight for
the Walker circulation c′* field and obtain the local ENSO‐
associatedWalker circulationc′ENSO*. (The magnitude of the

squared correlation coefficient, also known as coefficient of
determination, is useful because it gives the proportion of the
variance (fluctuation) of one variable that is predictable from
the other variable. It is the ratio of the explained variation to
the total variation, and it is also one of the best means for
evaluating the strength of the linear association between x and
y. From this point, we believe that it is an appropriate weight
to represent the variance of Walker circulation field associ-
ated with Niño 3.4 index.)
[12] Further, from Figure 2 and Table 2 it is seen the fact

that not only the observed Walker circulation, but also the
hindcast Walker circulation of each model, are also very
closely related to the observed ENSO forcing, indicating
that the lower boundary SST forcings of most of the models
(or predicted SSTs in coupled models) can apparently cap-
ture the ENSO‐associated signals during the DJF seasons. On
the basis of this interesting finding, we utilize the observed
Niño3.4 index as weight to compute the ENSO‐associated
Walker circulation in the models.
[13] Further, we carry out a scatter diagram analysis to

separate the better performing models from the rest. For this
we first compute the pattern correlation [Wilks, 1995]
between the observed ENSO‐associated Walker circulation
(c′ENSO*) and precipitation over the tropical Pacific (100°E–
60°W, 10°S–10°N) during the DJF seasons of the study
period. Similar pattern correlations are also computed for
each model based on its hindcasts. The observed pattern
correlations for each DJF season are plotted respectively
against those from each model.
[14] The statistical significance of the correlations was

computed based on the standard Student’s two‐tailed t test
[Spiegel and Stephens, 2008; Wilks, 1995]. The simple
number of degrees of freedom for the temporal correlation
over the 23 year span is 21. Further effective spatial degree of
freedom (ESDOF) [Snedecor and Cochran, 1980, Bretherton
et al., 1999, Wang and Shen, 1999] is applied to find the
statistical significance for spatial pattern correlations. We
follow the standard leave‐one‐out cross‐validation method
[Michaelsen, 1987; Jolliffe and Stephenson, 2003; World
Meteorological Organization, 2006; Kang et al., 2009]
throughout the work while evaluating the hindcast skills. For
example, we compute seasonal anomalies (of each model
parameter as well as those from observations) from the
corresponding climatological means that are obtained by
excluding information from the target year for each year
while carrying out simple composite method as well as while
applying the climate filter method. In case of the climate
filter, although more skillful models are not the same for all
hindcast period because of different sampling year in each
target year, we found that the top five most skillful models

Figure 3. Observed pattern correlation between the ENSO‐
associated walker circulation and precipitation (y axis) over
the tropical Pacific region (100°E∼60°W, 10°S∼10°N), for
23 boreal winter during the period 1981–2003, plotted
against those from the individual models (x axis). The blue
solid line is the statistical line of fit, and the red dashed line
is a reference diagonal line. The slope “b” and the intercept
“yint” from the regression line of fit are provided in the
upper left. The “xycorr” stands for the temporal correlations
between observation and each model.
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cleared the criteria for the study period of 1981–2003 stably
(table not shown).

3. Fidelity of the Hindcast Relationship Between
ENSO‐Associated Walker Circulation and
Tropical Pacific Rainfall

[15] As mentioned earlier, we achieve the grading of the
models through evaluation of the hindcast c′ENSO* rainfall
relationship in the tropical Pacific. Scatter diagrams depicting
the reproducibility of the relationship in the tropical Pacific
for a “more skillful” model and a “less skillful” model are
presented in Figure 3. Note that we have used two arbitrary
conditions to grade the model as “more skillful” or “less
skillful.” The criteria are (1) that the slope of the fit between
the observed and predicted pattern correlations should be

larger than 0.5 and less than 1.5 and (2) that the temporal
correlation coefficient between observation and model is
more than 0.4, the ∼90% statistical confidence level for the
study period (∼20 years) from a two‐tailed Student’s t test.
On the basis of these criteria, we have found that five out of
the 10 models cleared the criteria. We refer to these “more
skillful” models, which successfully clear the “ENSO
process” filter at least for the boreal winter season, as
class “A” models. The rest of the models are referred to as
class “B” models.
[16] We now conduct three types of MME hindcast ex-

periments over the study period. In the first experiment,
hereinafter referred to as the “A5,” only the hindcasts from
the class A models are used. In the second experiment we
name as the “B5,” only the class B models are used. In the
third experiment, referred to as the “M10,” hindcasts from

Figure 4. (a) Time series of the spatial pattern correlations between the observed and the predicted pre-
cipitation from M10 (dashed red line), A5 (solid blue line), and B5 (dotted green line) over the global
region. M10, A5, and B5 are the multimodel ensemble predictions based on a simple composite method
using the total of 10 models, the five more skillful models and the five less skillful models, respectively.
(b) Same as Figure 4a but for the 850 hPa temperature.
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all the 10 models are used. Figures 4a and 4b show that
the interannual variation of the spatial pattern correlations
between the observed and predicted MME for precipitation
and temperature at 850 hPa from all the three experiments
over the global region, respectively. A quick look indicates
that all the three MME runs result in a similar interannual
variation. However, significant differences of the perfor-
mance of predicted skill can be seen (see Table 3). Especially,
it is noteworthy that the skill score of 0.45 (significant
at 90% confidence level from two‐tailed Student’s t test;
ESDOF = 15.6) for the rainfall in the A5 experiment is
significantly higher than the corresponding skill score of
0.36 from the B5 (∼ at 80% confidence level from two‐
tailed Student’s t test; ESDOF = 16.2) in Figure 4a. The A5
skill is also superior to the skill from the all model‐inclusive
M10MME experiment (significant at 85% confidence level
from the two‐tailed t test; ESDOF = 14.1). In fact, the skills
for A5 are uniformly superior to those from B5 and M10
also for other variables such as velocity potential at 200 hPa
and geopotential height at 500 hPa, etc. (figures not shown).
Interestingly, the time averaged skills of all the MMEs for
predicting the 850 hPa temperature are weaker than those for
the corresponding skill score for the precipitation (Table 3),
which needs further attention. It can be deduced that the skills
of the M10 MME are essentially owing to those from the

A5 models. It is apparent that the year‐to‐year variation in
MME predicted skills for both of variables are sensitive to
the concurrent ENSO strength, at least for the winters of
1982–1983 and 1997–1998, when the concurrent El Niño
was strong (figure not shown [seeWang et al., 2009, Figure 9
and 10]); the aspect of the enhanced prediction skills during
the El Niño years possibly also needs more serious analysis.
[17] To visualize the sensitivity of the fidelity of various

MME to the location of the region where the rainfall or tem-
perature is predicted, in Figure 5 we present the time averages
of pattern correlation coefficients between the observed and
the predicted rainfall and temperature at 850 hPa for the five
regions of East Asia (90°E–150°E, 20°N–50°N), Australia
(110°E–160°E, 45°S–10°S), North America (50°W–140°W,
10°N–70°N), western North Pacific (120°E–180°E, 10°N–
30°N), and tropical South America (30°W–90°W, 10°S–
15°N), as examples. The first four regions also cover the
subtropical through midlatitude regions while the last one is
essentially in the tropics. In general, these results indicate the
predicted skills by the A5 are better than those for M10 and
B5 except for the precipitation and temperature at 850 hPa
over the tropical South America region, where the M10 gives
marginally higher skills but with an insignificant improve-
ment. This better performance of M10 for tropical South
America is essentially due to the relatively better performance
of the B5 MME here as compared to its performance in the
other regions. On the other hand, for the East Asia and
western North Pacific, the difference of prediction skill for
rainfall between A5 (0.29 and 0.44) and B5 (0.073 and 0.199)
reaches a high value of more than 0.2. This fact indicates that
the relatively poor performance of the M10 for these areas is
mainly due to the poor prediction skills of the B5models. The
relative performances of the various MME in the other
extratropical regions of Australia and North America are also
similar to those for East Asia or western North Pacific. This
result also supports the findings of J.‐Y. Lee et al. [2011] and
S.‐S. Lee et al. [2011] that the forecast skill for seasonal
precipitation over East Asia and the WNP region mainly

Table 3. Time Average of the Spatial Pattern Correlations
Between the Observed and Various Multimodel Ensemble Hindcast
Experiments for Precipitation and Those for Temperature at 850 hPa
Over the Global Regiona

Variables

Correlations

M10 A5 B5

Precipitation 0.433 0.450 0.362
850 hPa temperature 0.224 0.228 0.186

aHindcast experiments are M10, A5, and B5. M10, A5, and B5 represent
all 10 models, the five more skillful models, and the five less skillful
models, respectively.

Figure 5. Time average of spatial pattern correlations between the observed and the predicted precipita-
tions (solid bars) and those for the temperature at 850 hPa (light‐shaded bars) over the five regions of the
East Asia (90°E–150°E, 20°N–50°N), Australia (110°E–160°E, 45°S–10°S), North America (50°W–
140°W, 10°N–70°N), western North Pacific (120°E–180°E, 10°N–30°N), and tropical South America
(30°W–90°W, 10°S–15°N).
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comes from ENSO teleconnection. The decent performance
of the B5 models for the tropical South America is probably
due to a better fidelity in prediction of rainfall related to
ENSO in this tropical region sitting next to the eastern Pacific.
A similar result is also noted for the tropical Pacific (figures
not shown).
[18] In Figure 6 we further examine the spatial distribution

of all the MMEs’ prediction skills for precipitation and tem-
perature at 850 hPa in terms of temporal correlation coeffi-
cient at each gird point for the period of 1981–2003. The
statistical significance of the correlation coefficients was

computed using Student’s two‐tailed t test. The region of
significant correlation at the 99% confidence level is outlined.
In general, high prediction skills are confined to the global
tropical regions, which are especially central and eastern
tropical Pacific. Though the prediction skills of the A5 are
significantly superior to those of B5 and M10 MME for both
of variables over the whole global region, it is shown that the
capture of the good skills is a little difficult in a few regions
such as the Maritime continent, the northern part of Africa
and the North Atlantic Ocean. We also find that the A5 pre-
diction skills are considerably improved as compared to those

Figure 6. Temporal correlation coefficients between (a, c, and e) the observed and predicted precipita-
tions and (b, d, and f) those for the temperatures at 850 hPa from A5 (Figures 6a and 6b), B5 (Figures 6c
and 6d), and M10 (Figures 6e and 6f). The contour lines represent significant correlation coefficients at
the 99% confidence level. The value is 0.526 from a two‐tailed Student’s t test.
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of B5 and M10 for two variables over the western North
Pacific including the East Asia and the Indian Ocean.
[19] In short, as shown above, although the contribution

from the nonperforming models is not considered in the
MME, the skills for a few tropical regions are unaffected.
However, inmidlatitudes, such omissionwill actually improve
the prediction skills.
[20] In order to explore the usefulness of the climate filter

method for real‐time seasonal prediction, we have applied
the current method to MME prediction for boreal winter
seasons of December 2008 to February 2009 and December
2009 to February 2010. Figure 7 shows the spatial pattern
correlations between the observed and the predicted rainfall
and temperature at 850 hPa over the six regions, namely, the
Global region (0°–360°E, 90°S–90°N), East Asia (90°E–
150°E, 20°N–50°N), Australia (110°E–160°E, 45°S–10°S),
North America (50°W–140°W, 10°N–70°N), western North
Pacific (120°E–180°E, 10°N–30°N), and tropical South
America (30°W–90°W, 10°S–15°N) for the two winter sea-

sons. In general, the performances of predicted skills for
precipitation by A5 are better than those by all model‐
inclusive M10 and B5. It is to be noted, however, that the
skills over East Asia for all the three MME suites for 2008 are
particularly poor, the reason for which needs to be examined.
Notwithstanding this, from these results it is noteworthy
that theA5 actually gives, in general, more skillful predictions
than M10 for the examined cases and hence is potentially
useful for real time seasonal prediction.

4. Concluding Remarks

[21] Using the NCEP‐DOE reanalysis [Kanamitsu et al.,
2002], CMAP rainfall data sets [Xie and Arkin, 1997] and
operational MME hindcast data sets of the APEC climate
center, we propose and demonstrate a new approach to further
improve the MME hindcasts for the boreal winter seasons
(DJF) during the period 1981–2003. We find that the observed
rainfall and local ENSO‐associated Walker circulation in the

Figure 7. Spatial pattern correlations between the observed and the predicted precipitations (solid bars)
and those for the temperature at 850 hPa (light‐shaded bars) for boreal winter (DJF) of (a) December 2008
to February 2009 and (b) December 2009 to February 2010 over the six regions of the global region (0°–
360°E, 90°S–90°N), East Asia (90°E–150°E, 20°N–50°N), Australia (110°E–160°E, 45°S–10°S), North
America (50°W–140°W, 10°N–70°N), western North Pacific (120°E–180°E, 10°N–30°N), and tropical
South America (30°W–90°W, 10°S–15°N).
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tropical Pacific are strongly correlated. Accordingly, we apply
a “climate filter” that examines the degree of reproducibility of
the above observed feature to grade the fidelity of the model
performance. We also explore the possible use of the above
filter to devise an improvedMME suite for seasonal prediction.
[22] It can be seen that prediction skills of our sample

MME, involving all the available 10 models, only comes
from the five “better” models that successfully reproduce the
tropical Pacific ENSO‐rainfall relationship. Further, the dis-
tribution of the prediction for the MMEs with “more skillful”
and “less skillful” models is region‐sensitive. It can be dis-
cerned that the gap between skills of MMEs comprising of
only the “more skillful”models and those with only the “less
skillful” models significantly widens over the extratropics
and consequently drags down the skills of a comprehensive
MME which contains all the available models. The possible
reason is that the “more skillful” models which clear through
the climate filter may provide appropriate heat sources in the
tropics which facilitate better teleconnection to the extra-
tropics and beyond, though detailed diagnosis to verify this
hypothesis is beyond the scope of the current study. There is
very little difference in the prediction skills for the MME
carried out with all themodels as well as those carried outwith
the “more skillful” models in the regions such as tropical
SouthAmerica that are adjacent to the eastern tropical Pacific,

where almost all the models perform relatively well. Further,
this research also supports the results of Yoo and Kang [2005]
multimodel composite provides a better skill if models that
are more skillful; we have ascertained this fact by computing
the correlation skills of MME, composite variance, etc. (fig-
ures not shown), following Yoo and Kang [2005]. The study,
however, is subject to the limitations of data length, which is
unavoidable due to the lack of longer hindcasts. The fact that
the ENSO alone is not a major climate driver for the climate
everywhere is also an issue. Nonetheless, our work shows that
selection of the models that represent realistic climate features
and associated responses enhance the chances of better pre-
diction. Improvement of model fidelity of climate processes
[e.g., Iizuka et al., 2003; Lee et al., 2008] and use of data
assimilation and initialization [e.g.,Hudson et al., 2011] with
judicious use of “climate filters” such as presented here will
translate into better MME‐based seasonal prediction.

Appendix A: Hindcast Skill Scores of Operational
MME‐Based Climate Prediction at APEC Climate
Center

[23] In APEC Climate Center (APCC), dynamical sea-
sonal prediction information is produced through a state‐of‐
the art multimodel ensemble prediction system utilizing the

Figure A1. Time average of spatial pattern correlation coefficients between the observed and the pre-
dicted precipitation for 23 boreal winters (DJF) during the period of 1981–2003 over the (a) global
and (b) East Asian (90°E–150°E, 20°N–50°N) regions. The gray bars are the hindcast skill scores of indi-
vidual models involved in routine operational MME‐based climate predictions at APCC. The colored bars
indicate hindcast skills of the four operational deterministic multimodel ensemble methods of APEC Cli-
mate Center for the same season; red (M10) and yellow (A5) bars are for the simple composite of bias
corrected model ensemble means, the blue ones represent the multiple regression based blend of model
ensemble means, the black ones are for the synthetic multimodel ensemble based on multiple regression
on leading PCs of EOF; the green ones present the stepwise pattern projection methods based on the
pointwise regression method. (c and d) The same as Figures A1a and A1b, except for the temperature
at 850 hPa.
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model predictions from APEC member economies every
month. The climate prediction information and performance,
produced by APCC, are disseminated to the APEC regions.
[24] Figure A1 shows the prediction skills of the routine

operational MME (colored bars) and individual models
(gray bars) for precipitation and 850 hPa temperature for
23 boreal winters (DJF) during the period of 1981–2003.
Four kinds of deterministic operational MME techniques
are used. First, red bars indicate the simple arithmetic mean
of bias corrected predictions based on individual member
models [Peng et al., 2002], the blue ones are for the
pointwise multiple regression technique based on the train-
ing period [Krishnamurti et al., 2000], the black ones rep-
resent synthetic multimodel ensemble based on EOF‐filtered
data as minimizing the residual error variance [Yun et al.,
2005], the last green ones present the pointwise regression
method for predicting the predictand at each grid by pro-
jecting the predictor field onto the covariance pattern between
the large‐scale predictor field and the one‐point predictand
[Kug et al., 2008]. Finally, yellow bars are the same as red
bars, except for the simple arithmetic mean carried out with
the class A5 models which clear through the climate filter.
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